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Abstract. Using the density matrix renormalization group technique, we evaluate the low-energy spectrum
(ground state and first excited states) of the anisotropic antiferromagnetic spin-one-half chain under mag-
netic fields. We study both homogeneous longitudinal and transversal fields as well as the influence of a
transversal staggered field on the opening of a spin-gap. We find that only a staggered transversal field
opens a substantial gap.

PACS. 75.10.Jm Quantized spin models – 75.50.Ee Antiferromagnetics

1 Introduction

Recently, the properties of low-dimensional quantum
spin systems in longitudinal, transversal and/or stag-
gered magnetic fields have become of considerable inter-
est. To give an example, the two-dimensional compound
SrCu2(BO3)2 is a realization of the Shastry-Sutherland
model [1], close to quantum-criticality, with a spin gap of
31 K which shows magnetization plateaus in an external
field [2].

Most spin-1/2 systems show little anisotropies in the
magnetic exchange. The discovery [3] that low-dimen-
sional magnetic excitations in the rare-earth compound
Yb4As3 can explain the large linear specific heat coeffi-
cient γ in this low-carrier half-metal [4,5] opens the pos-
sibility to study in deeper detail the properties of a rare-
earth quantum-spin-chain-system with its enhanced mag-
netic anisotropies [6,7].

Inelastic neutron scattering experiments [8] on Yb4As3
found a gap to (all) magnetic excitations opening in the
presence of an external magnetic field, confirming a pre-
diction [3] by Schmidt et al. based on an interpretation of
previous specific heat data [9]. Several proposals have been
made in order to explain this very unusual behavior [10].
The first model [3] is based on inter-chain interactions.
The second model [11] is based on the observation that a
staggered Dzyaloshinsky-Moriya (DM) interaction, which
generates an effective staggered g-tensor, is allowed [6,7]
in the 4f -compound Yb4As3. It is know that a staggered
g-tensor leads to a gap in an external field [12,13]. The
third model [10], based on a mean-field analysis of the
anisotropic spin-chain, proposes that a gap opens in the
presence of a uniform transversal magnetic field.

Here we will analysis the two latter proposals by a
systematic DMRG-studies of the relevant models. We
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find that only the effective staggered g-factor-model is
able to explain the field-dependent opening of a spin-gap
in Yb4As3.

1.1 Model and method

The magnetic properties of Yb4As3, in the absence of
an external magnetic field, are well described by an an-
tiferromagnetic Heisenberg spin-1/2 chain. Switching on
the external magnetic field, experimental data shows the
opening of a gap in the low energy excitation spec-
trum. However, the standard Heisenberg model in an ap-
plied field remains gapless from zero magnetic field up to
the saturation magnetization. The anisotropic Heisenberg
model

H =
L−1∑
i=1

[Jxy

(
Sx
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)
+ JzS
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with an uniform transversal field hx, a staggered transver-
sal field hstag

x and a longitudinal field hz incorporates all
features proposed [10,11] to be relevant for Yb4As3. The
magnetic fields appearing in (1) include the gyromagnetic
g-factors.

The staggered transversal field in (1) is induced by
a staggered Dzyaloshinsky-Moriya interaction given by
the term

∑
i(−1)iD · (Si × Si+1). Setting D = |D| =

Jz sin(2θ) the DM-term can be eliminated [12,14] by a
rotation around D by an angle θ leading to hstag

x =
sin(θ)hz , which can be interpreted as an effective stag-
gered g-tensor.

We have simulated the anisotropic Heisenberg
model (1) using the Density Matrix Renormalization



36 The European Physical Journal B

0 0.2 0.4 0.6 0.8 1
Jz

0

0.05

0.1

0.15

∆

L = 20
L = 40
L = 60
L = 80
L = 100

h
x
 = 0 ,   h

x

stag
 = 0 ,   h

z
 = 0

Fig. 1. Comparison between DMRG results (filled circles) for
the finite-size gap ∆(L), using m = 50 states, and the Bethe-
ansatz results (lines). The gap is given as a function of the
anisotropy Jz in the absence of external magnetic fields.

Group (DMRG) technique [15]. We have, in general, in-
vestigated carefully the dependence of the results on the
number m of states kept in the DMRG calculations. If
not stated otherwise, we have used open boundary con-
ditions, the finite-system-size algorithm and extrapolated
the finite-size data to the thermodynamic limit, setting
Jxy ≡ 1 in (1).

1.2 Comparison of DMRG and Bethe-ansatz results

In order to verify the accuracy of our approach for the ex-
citation energies we use the Bethe-ansatz equations [18,19]
to evaluate the gap ∆(L) for finite chains with size L,

∆(L) = E1(L) − E0(L) ,

for the anisotropic antiferromagnetic Heisenberg chain
and then compare it with our DMRG simulations. In Fig-
ure 1 we plot the finite-size gap obtained by using DMRG
versus the anisotropy (0 ≤ Jz ≤ 1), the lines correspond to
the exact finite-size gap obtained using Bethe-ansatz. Al-
though in this regime the gap in the thermodynamic limit
is equal to zero, the correspondence between our DMRG
simulations for the gap for finite system sizes with the
Bethe-ansatz results is very accurate.

2 Homogeneous transversal magnetic field

Uimin et al. proposed, by a mean-field calculation [10],
that a gap opens for the spin-1/2 anisotropic Heisenberg
chain

H =
L−1∑
i=1

[Jxy(Sx
i Sx

i+1+Sy
i Sy

i+1) + JzS
z
i Sz

i+1] − hx

L∑
i=1

Sx
i

(2)

in the presence of a homogeneous longitudinal field hx.
This mean-field result would then imply that no further
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Fig. 2. Finite-size gaps observed for the Heisenberg chain of
size L in a transversal magnetic field hx with Jxy = 1, Jz =
0.75.

magnetic anisotropies would be needed to explain the ex-
perimentally observed spin-gap of Yb4As3.

In spin-wave theory Uimin et al. found [10] for the
model (2) a gap ∆SWT consisting of two branches:

∆SWT = min(∆1, ∆2) ,

with ∆1 = hx and

∆2 =

√√√√2
3

(
1 − Jz

2 + Jz

)(
(2 + Jz)2 −

(
3hx

2

)2
)

· (3)

Up to a certain magnetic field the value of the gap is
almost linear and above this value the gap starts to close
itself following a quadratic form, compare Figures 4 and 5.

The physical reasoning for the gap present in the mean-
field results reviewed above is the following: neglecting the
Sx

i Sx
i+1 coupling term in the Hamiltonian (2) it becomes

identical to the Ising model in a transversal field, which
has a two-fold degenerate ground-state and a gap. It has
been argued [16,17], that this reasoning remains valid also
for (2).

We compute the energy gap ∆(L) using the DMRG.
We calculate the ground state and the lowest excited
states energies Ei (i = 0, 1, 2 ) and form the following
energy differences ∆1 = E1 − E0 and ∆2 = E2 − E0

respectively between the first and the second excited state
with the ground state energy. Figures 2 and 3 show the
behavior of ∆i(L) with the transverse magnetic field hx

for Jz = 0.75, 0.9706.
In the thermodynamic limit the first energy difference

∆1 → 0 in the low magnetic field regime (hx � 2). This
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Fig. 3. Finite-size gaps observed for the Heisenberg chain of
size L in a transversal magnetic field hx with Jxy = 1, Jz =
0.9706.

behavior is in agreement with the fact that the GS is
doubly degenerated in this regime when L → ∞. Thus
to estimate the eventually system-gap in this regime we
calculate ∆2. ∆2 shows a more monotonous behavior.
For fixed hx, ∆2(L) is decreasing with the system-size
L (∆2(100) ≤ 0.04). Figures 4 and 5 show the extra-
polate gap for the thermodynamic limit with Jxy = 1
and Jz = 0.75, 0.9706. We have evaluated also the in-
duced uniform magnetization Mx, which we present in
Figure 6 for Jz = 0.25 and Jz = 0.9706 (value which cor-
responds to the small anisotropies in xy-plane appropriate
for Yb4As3 [3]).
We observe:

i) The DMRG data presented in Figures 4 and 5 (open
circles) show a phase diagram divided in two regions
well separated by a critical magnetic field, which de-
pends on Jz and which is around hx ' 2 for Jz ' 1
in agreement with the isotropic case [20].
For hx below the critical magnetic field the system ap-
pears gapless. For hx above the critical magnetic field,
a linear gap opens corresponding to the classical fer-
romagnetic phase, polarized along x-direction.

ii) As it appears in Figure 4 and 5, where we plot the
spin-wave theory gap (open diamonds), there is a sub-
stantial disagreement between our DMRG-simulation
and SWT prediction [10].

iii) We find that the induced magnetization Mx saturate
for hx larger than the critical field, as illustrated in Fig-
ure 6 for Jz = 0.25 and Jz = 0.9706 (and the staggered
magnetization reduces to zero [21]). This explains the
opening of a gap linear in hx in this phase.
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Fig. 4. The gap observed for the Heisenberg chain in a
transversal magnetic field hx with Jxy = 1, Jz = 0.75. The
circle symbols come from DMRG simulations (m = 50) ex-
trapolated to the thermodynamic limit. The diamond symbols
represent induced gap calculated from spin-wave theory.
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Fig. 5. The gap observed for the Heisenberg chain in a
transversal magnetic field hx with Jxy = 1, Jz = 0.9706. The
circle symbols come from DMRG simulations (m = 50) extrap-
olated to the thermodynamic limit. The diamonds represent
the induced gap calculated from spin-wave theory.
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Fig. 6. The magnetization Mx along x for a anisotropy Jz =
0.25, 0.9706. Note the saturation of Mx above a certain critical
field.
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Fig. 7. DMRG results for the the gap for various staggered
fields hstag

x , as a function of chain length L, for hz = 0.

Dmitriev et al. have used scaling arguments [17] and
found for the Hamiltonian (2) that a gap ∆ ∼ (hx)ν

opens for small external magnetic field, with an expo-
nent ν depending on the anisotropy. Our simulations
for small anisotropy are not supporting these predictions
[17,22]. But due to the difficulty to resolve accurately ∆2

using DMRG, we cannot exclude an eventual small gap.
Although till now we are not able to give a clear answer
to the gap-opening question, it seems that, if there is a
gap, the prefactor of the scaling law would need to be
small and, in any case, too small to explain experimental
results on Yb4As3.

3 Staggered magnetic field

3.1 Model

The staggered Dzyaloshinsky-Moriya interaction, which
is allowed [6,7,11] in the 4f -compound Yb4As3, leads
in an external homogeneous magnetic field hz to an ef-
fective transversal staggered field hstag

x . In this context
the anisotropy is not relevant and we can consider the
(isotropic) Heisenberg case Jxy = Jx ≡ J :

H = J

L−1∑
i=1

Si · Si+1 + hstag
x

L∑
i=1

(−1)iSx
i − hz

L∑
i=1

Sz
i .

(4)

The above Hamiltonian is not invariant under reflection
with respect to the mid point of the chain when L is even.
However in the standard implementation of the DMRG
algorithm, L is even and the reflection symmetry is used.
The Hamiltonian (4) can be easily made invariant under
reflection by means of a local rotation, given by:
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Fig. 8. Magnetization curves along the z-direction, com-
pare [14].

The transformed Hamiltonian reads:

H = J
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[
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3.2 Effect of the staggered transversal field

We start by analyzing the finite-size dependence of the
energy gap. Figure 7 shows the behavior of the finite size
system gap versus the staggered magnetic field. One can
clearly observe (i) that the gap vanishes in the thermody-
namic limit only for zero hstag

x and (ii) that the magnetic
correlation length is large but finite in the gapped case
hstag

x > 0; the data for larger system sizes L is essentially
flat for hstag

x > 0.
In Figure 8 we show the magnetization along the

z-direction as a function of hz, for various hstag
x . Since

Jxy = Jx ≡ 1 in (5), these results can be compared directly
to those given in Figure 6 for fields along x-direction.
We note that the second-order phase transition to a com-
pletely magnetized state occurring at hz = 2 in the ab-
sence of a staggered field is progressively smeared out by
hstag

x ; the transversal field induces quantum fluctuations
into the magnetized state. These results confirm a similar
study [14].

3.3 Comparison with experiment

Now using the experimental estimates for the exchange
coupling in the isotropic Heisenberg chain, J ' 26K, we fit
the experimental data for the gap. The staggered magnetic
field hstag

x is proportional to the experimental magnetic
field Hext via hstag

x = c0 sin(θ)Hext = c0/g⊥ sin(θ)hz ,
where g⊥ is g-factor for a magnetic-field perpendicular
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Fig. 9. Fit to experiment with data (m = 70) extrapolated to
the thermodynamic limit.

to the chain-direction. The g-factors for Yb4As3 are very
anisotropic, g⊥ has been estimated to be [14] g⊥ ≈ 1.3.

Our fit yields c0/g⊥ sin(θ) ' 0.18. The fitting to exper-
imental data depends on c0, which has not yet been deter-
mined precisely by experiment. While in the literature [11]
c0 ' 0.27, we get a good agreement with our DMRG simu-
lations and the experimental curve for c0 ' 0.23 (assuming
g⊥ ' 1.3) (Fig. 9).

3.4 General case

We consider now the case where the staggered and the
uniform magnetic field are not proportional. We want to
explore the excitation gap of

H =
L−1∑
i=1

(Si · Si+1 − δSz
i Sz

i+1)

+ hstag
x

L∑
i

(−1)iSx
i − hz

L∑
i

Sz
i . (6)

In Figure 10 we present for hz = 0 the gap ∆ as a
function of the anisotropy δ and the parameters a0 and a1

entering in the scaling-law

∆ = a0

(
hstag

x

)a1 (7)

for the gap. Bosonization predicts [12,13] a0 ≈ 1.85 and
a1 = 2/3 for the isotropic case (δ = 0, hz = 0) for small
staggered magnetic fields hstag

x . For the isotropic case (δ =
0) we present in Figure 11 the same data as a function
of hz .

We also examined the DMRG-data using (7) includ-
ing multiplicative logarithmic corrections [12,13]: ∆ =
a0 (hstag

x )a1 |log hstag
x |1/6 We found essentially the same

values for the parameters a0 and a1 as presented in Fig-
ure 10 and Figure 11. We note, that (7) hold only in the
asymptotic limit hstag

x → 0, which we do not examine
in the present study. The results presented in Figures 10
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and 11 show a0 and a1 as obtained for overall fits to the
gap, for hstag

x ≤ 0.8. We believe this parameter-region to
be experimentally relevant.

4 Conclusions

We have studied the anisotropic Heisenberg-chain with
staggered and uniform transversal and uniform longitu-
dinal fields by DMRG. We found no evidence for a sub-
stantial gap opening for a homogeneous transversal field,
as predicted by a mean-field [10] and a scaling [17] anal-
ysis. We found, however, a gap opening for a staggered
transversal field, in accordance with previous studies [12,
13]. These results lead to the conclusion, that the gap-
opening in the the rare-earth, 4f -compound Yb4As3 com-
pound in an external magnetic field is attributable to a
staggered Dzyaloshinsky-Moriya tensor [6,7,11].
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